234 research outputs found

    A Neural Network Method for Land Use Change Classification, with Application to the Nile River Delta

    Full text link
    Detecting and monitoring changes in conditions at the Earth's surface are essential for understanding human impact on the environment and for assessing the sustainability of development. In the next decade, NASA will gather high-resolution multi-spectral and multi-temporal data, which could be used for analyzing long-term changes, provided that available methods can keep pace with the accelerating flow of information. This paper introduces an automated technique for change identification, based on the ARTMAP neural network. This system overcomes some of the limitations of traditional change detection methods, and also produces a measure of confidence in classification accuracy. Landsat thematic mapper (TM) imagery of the Nile River delta provides a testbed for land use change classification methods. This dataset consists of a sequence of ten images acquired between 1984 and 1993 at various times of year. Field observations and photo interpretations have identified 358 sites as belonging to eight classes, three of which represent changes in land use over the ten-year period. Aparticular challenge posed by this database is the unequal representation of various land use categories: three classes, urban, agriculture in delta, and other, comprise 95% of pixels in labeled sites. A two-step sampling method enables unbiased training of the neural network system across sites.National Science Foundation (SBR 95-13889); Office of Naval Research (N00014-95-1-409, N00014-95-0657); Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-042

    ARTMAP Neural Network Classification of Land Use Change

    Full text link
    The ability to detect and monitor changes in land use is essential for assessment of the sustainability of development. In the next decade, NASA will gather high-resolution multi-spectral and multi-temporal data, which could be used for detecting and monitoring long-term changes. Existing methods are insufficient for detecting subtle long-term changes from high-dimensional data. This project employs neural network architectures as alternatives to conventional systems for classifying changes in the status of agricultural lands from a sequence of satellite images. Landsat TM imagery of the Nile River delta provides a testbed for these land use change classification methods. A sequence often images was taken, at various times of year, from 1984 to 1993. Field data were collected during the summer of 1993 at88 sites in the Nile Delta and surrounding desert areas. Ground truth data for 231 additional sites were determined by expert site assessment at the Boston University Center for Remote Sensing. The field observations are grouped into classes including urban, reduced productivity agriculture, agriculture in delta, desert/coast reclamation, wetland reclamation, and agriculture in desert/coast. Reclamation classes represent land use changes. A particular challenge posed by this database is the unequal representation of various land use categories: urban and agriculture in delta pixels comprise the vast majority of the ground truth data available in the database. A new, two-step training data selection method was introduced to enable unbiased training of neural network systems on sites with unequal numbers of pixels. Data were successfully classified by using multi-date feature vectors containing data from all of the available satellite images as inputs to the neural network system.National Science Foundation Graduate Fellowship; National Science Foundation (SBR 95-13889); Office of Naval Research (N00014-95-I-409, N00014-95-0657); Air Force Office of Scientific Research (F49620-0l-1-0397)

    A Neural Network Method for Mixture Estimation for Vegetation Mapping

    Full text link
    While most forest maps identify only the dominant vegetation class in delineated stands, individual stands are often better characterized by a mix of vegetation types. Many land management applications, including wildlife habitat studies, can benefit from knowledge of mixes. This paper examines various algorithms that use data from the Landsat Thematic Mapper (TM) satellite to estimate mixtures of vegetation types within forest stands. Included in the study are maximum likelihood classification and linear mixture models as well as a new methodology based on the ARTMAP neural network. Two paradigms are considered: classification methods, which describe stand-level vegetation mixtures as mosaics of pixels, each identified with its primary vegetation class; and mixture methods, which treat samples as blends of vegetation, even at the pixel level. Comparative analysis of these mixture estimation methods, tested on data from the Plumas National Forest, yields the following conclusions: (1) accurate estimates of proportions of hardwood and conifer cover within stands can be obtained, particularly when brush is not present in the understory; (2) ARTMAP outperforms statistical methods and linear mixture models in both the classification and the mixture paradigms; (3) topographic correction fails to improve mapping accuracy; and (4) the new ARTMAP mixture system produces the most accurate overall results. The Plumas data set has been made available to other researchers for further development of new mapping methods and comparison with the quantitative studies presented here, which establish initial benchmark standards.National Science Foundation (IRI 94-0165, SBR 95-13889); Office of Naval Research (N00014-95-1-0409, N00014-95-0657); Region 5 Remote Sensing Laboratory of the U.S. Forest Servic

    ART Neural Networks for Remote Sensing Image Analysis

    Full text link
    ART and ARTMAP neural networks for adaptive recognition and prediction have been applied to a variety of problems, including automatic mapping from remote sensing satellite measurements, parts design retrieval at the Boeing Company, medical database prediction, and robot vision. This paper features a self-contained introduction to ART and ARTMAP dynamics. An application of these networks to image processing is illustrated by means of a remote sensing example. The basic ART and ARTMAP networks feature winner-take-all (WTA) competitive coding, which groups inputs into discrete recognition categories. WTA coding in these networks enables fast learning, which allows the network to encode important rare cases but which may lead to inefficient category proliferation with noisy training inputs. This problem is partially solved by ART-EMAP, which use WTA coding for learning but distributed category representations for test-set prediction. Recently developed ART models (dART and dARTMAP) retain stable coding, recognition, and prediction, but allow arbitrarily distributed category representation during learning as well as performance

    Art Neural Networks for Remote Sensing: Vegetation Classification from Landsat TM and Terrain Data

    Full text link
    A new methodology for automatic mapping from Landsat Thematic Mapper (TM) and terrain data, based on the fuzzy ARTMAP neural network, is developed. System capabilities are tested on a challenging remote sensing classification problem, using spectral and terrain features for vegetation classification in the Cleveland National Forest. After training at the pixel level, system performance is tested at the stand level, using sites not seen during training. Results are compared to those of maximum likelihood classifiers, as well as back propagation neural networks and K Nearest Neighbor algorithms. ARTMAP dynamics are fast, stable, and scalable, overcoming common limitations of back propagation, which did not give satisfactory performance. Best results are obtained using a hybrid system based on a convex combination of fuzzy ARTMAP and maximum likelihood predictions. A prototype remote sensing example introduces each aspect of data processing and fuzzy ARTMAP classification. The example shows how the network automatically constructs a minimal number of recognition categories to meet accuracy criteria. A voting strategy improves prediction and assigns confidence estimates by training the system several times on different orderings of an input set.National Science Foundation (IRI 94-01659, SBR 93-00633); Office of Naval Research (N00014-95-l-0409, N00014-95-0657

    ART and ARTMAP Neural Networks for Applications: Self-Organizing Learning, Recognition, and Prediction

    Full text link
    ART and ARTMAP neural networks for adaptive recognition and prediction have been applied to a variety of problems. Applications include parts design retrieval at the Boeing Company, automatic mapping from remote sensing satellite measurements, medical database prediction, and robot vision. This chapter features a self-contained introduction to ART and ARTMAP dynamics and a complete algorithm for applications. Computational properties of these networks are illustrated by means of remote sensing and medical database examples. The basic ART and ARTMAP networks feature winner-take-all (WTA) competitive coding, which groups inputs into discrete recognition categories. WTA coding in these networks enables fast learning, that allows the network to encode important rare cases but that may lead to inefficient category proliferation with noisy training inputs. This problem is partially solved by ART-EMAP, which use WTA coding for learning but distributed category representations for test-set prediction. In medical database prediction problems, which often feature inconsistent training input predictions, the ARTMAP-IC network further improves ARTMAP performance with distributed prediction, category instance counting, and a new search algorithm. A recently developed family of ART models (dART and dARTMAP) retains stable coding, recognition, and prediction, but allows arbitrarily distributed category representation during learning as well as performance.National Science Foundation (IRI 94-01659, SBR 93-00633); Office of Naval Research (N00014-95-1-0409, N00014-95-0657

    Relative Invariants, Ideal Classes and Quasi-Canonical Modules of Modular Rings of Invariants

    Get PDF
    We describe "quasi canonical modules" for modular invariant rings RR of finite group actions on factorial Gorenstein domains. From this we derive a general "quasi Gorenstein criterion" in terms of certain 1-cocycles. This generalizes a recent result of A. Braun for linear group actions on polynomial rings, which itself generalizes a classical result of Watanabe for non-modular invariant rings. We use an explicit classification of all reflexive rank one RR-modules, which is given in terms of the class group of RR, or in terms of RR-semi-invariants. This result is implicitly contained in a paper of Nakajima (\cite{Nakajima:rel_inv}).Comment: 16 page

    A global analysis of the spatial and temporal variability of usable Landsat observations at the pixel scale

    Get PDF
    The Landsat program has the longest collection of moderate-resolution satellite imagery, and the data are free to everyone. With the improvements of standardized image products, the flexibility of cloud computing platforms, and the development of time series approaches, it is now possible to conduct global-scale analyses of time series using Landsat data over multiple decades. Efforts in this regard are limited by the density of usable observations. The availability of usable Landsat Tier 1 observations at the scale of individual pixels from the perspective of time series analysis for land change monitoring is remarkably variable both in space (globally) and time (1985–2020), depending most immediately on which sensors were in operation, the technical capabilities of the mission, and the acquisition strategies and objectives of the satellite operators (e.g., USGS, commercial company) and the international ground receiving stations. Additionally, analysis of data density at the pixel scale allows for the integration of quality control data on clouds, cloud shadows, and snow as well as other properties returned from the atmospheric correction process. Maps for different time periods show the effect of excluding observations based on the presence of clouds, cloud shadows, snow, sensor saturation, hazy observations (based on atmospheric opacity), and lack of aerosol optical depth information. Two major discoveries are: 1) that filtering saturated and hazy pixels is helpful to reduce noise in the time series, although the impact may vary across different continents; 2) the atmospheric opacity band needs to be used with caution because many images are removed when no value is given in this band, when many of those observations are usable. The results provide guidance on when and where time series analysis is feasible, which will benefit many users of Landsat data.University of Connecticut; National Aeronautics and Space Administration; 80NSSC20K0022 - NASA; 20-DG-11132762-017 - Department of Agriculture/Forest Service; G12PC00070 - Department of the Interior/U.S. Geological SurveyPublished versio

    Nature of the supercritical mesophase

    Get PDF
    It has been reported that at temperatures above the critical there is no “continuity of liquid and gas”, as originally hypothesized by van der Waals [1]. Rather, both gas and liquid phases, with characteristic properties as such, extend to supercritical temperatures [2]-[4]. Each phase is bounded by the locus of a percolation transition, i.e. a higher-order thermodynamic phase change associated with percolation of gas clusters in a large void, or liquid interstitial vacancies in a large cluster. Between these two-phase bounds, it is reported there exists a mesophase that resembles an otherwise homogeneous dispersion of gas micro-bubbles in liquid (foam) and a dispersion of liquid micro-droplets in gas (mist). Such a colloidal-like state of a pure one-component fluid represents a hitherto unchartered equilibrium state of matter besides pure solid, liquid or gas. Here we provide compelling evidence, from molecular dynamics (MD) simulations, for the existence of this supercritical mesophase and its colloidal nature. We report preliminary results of computer simulations for a model fluid using a simplistic representation of atoms or molecules, i.e. a hard-core repulsion with an attraction so short that the atoms are referred to as “adhesive spheres”. Molecular clusters, and hence percolation transitions, are unambiguously defined. Graphics of color-coded clusters show colloidal characteristics of the supercritical mesophase. We append this Letter to Natural Science with a debate on the scientific merits of its content courtesy of correspondence with Nature (Appendix)info:eu-repo/semantics/publishedVersio
    • …
    corecore